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Abstract
In recent years, the Internet of Things (IoT) has gained global popularity. IoT can connect several objects and create a dynamic 
environment; thus, an IoT system must adapt to environmental changes. To adapt to a dynamic environment, an effective 
decision-making method is required for an IoT system. Game theory is a mathematical method for decision-making among 
decision makers, and it may be applied to decision-making for an IoT system. In addition, the concept of self-adaptive soft-
ware may be applied to IoT because such software evaluates and changes its behavior to satisfy its intended use, and the IoT 
system then makes decisions and adapts to its dynamic environment. In this study, a decision-making method is proposed 
along with game theoretic decision-making and self-adaptive loop mechanisms for IoT. The proposed method is based on 
MAPE-K loops, which are general processes used in self-adaptive software with shared knowledge. In addition, Nash equi-
librium is applied to extract candidate strategies, which are evaluated for selecting the most optimal solution. The proposed 
method was implemented as a prototype, and experiments were conducted to evaluate its runtime performance. The results 
show that the proposed method can be applied to an IoT environment at runtime.
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1  Introduction

In recent years, Internet of Things (IoT) has become increas-
ingly sophisticated and widespread, and it is applied in vari-
ous fields [e.g., smart home (Jo and Yoon 2018; Park et al. 
2019), smart city (Jeong and Park 2019; Choi and Ahn 
2019), healthcare (Azimi et al. 2017), middleware (Ouech-
tati et al. 2018), and augmented reality (Jo and Kim 2019)]. 
IoT is a technology that connects objects using a wireless 
network. Therefore, IoT can connect several objects together 
to create a dynamic environment (Kaur and Kaur 2017; 
Rayes and Samer 2017). In addition, an IoT environment is 

changed through its surrounding environment. Therefore, an 
IoT system must dynamically satisfy its requirements and 
adapt to changes in the environment at runtime. Therefore, 
an IoT system needs a decision-making method for adapt-
ing to dynamic environmental changes (Balasubramaniam 
and Jagannath 2015; Mohammadi et al. 2019). Game theory 
is a mathematical theory, and is used for decision-making 
between rational decision-makers (Nisan et al. 2007; Straffin 
1993). Game theory has influenced various fields, includ-
ing economics, biology, politic science, and psychology. In 
addition, it was applied to computer science, artificial intel-
ligence, networking, and decision-making algorithms (Sho-
ham 2008; Algur and Kumar 2013; Kumari and Chakravar-
thy 2016). Therefore, game theory may be applied to 
decision-making for IoT. In addition, to adapt to a dynamic 
environment, self-adaptive software may be applied to IoT 
(Hughes 2018). Self-adaptive software detects environmen-
tal conditions, and changes its behavior or structure if the 
software requirements are violated (Salehie and Tahvildari 
2009). In this study, we propose a game theoretic decision-
making method using a self-adaptive concept for IoT. The 
proposed method consists of a self-adaptive loop and a game 
theoretic decision-making method.
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The reminder of this paper is organized as follows. Sec-
tion 2 describes related studies, which are self-adaptive 
software and game theory. Section 3 introduces the game 
theoretic decision-making method for IoT. In Sect. 4, the 
empirical experiment is described. Section 5 provides some 
concluding remarks regarding this research.

2 � Related work

In this section, self-adaptive software and Nash equilibrium 
are introduced. In addition, several studies that applied game 
theory to software are described.

2.1 � Self‑adaptive software

Self-adaptive software adapts to its environment by changing 
its behavior or structure at runtime (Salehie and Tahvildari 
2009). One definition of self-adaptive software was defined 
by the Defense Advanced Research Projects Agency (Ladd-
aga and Robertson 2004) as follow:

“Self-adaptive software evaluates its own behavior and 
changes behavior when the evaluation indicates that it is not 
accomplishing what the software is intended to do, or when 
better functionality or performance is possible”.

To achieve self-adaptation, various methods and perspec-
tives have been studied (Knauss et al. 2016; Lee and Baik 
2015; Lee et al. 2016; Kim et al. 2017; Lee et al. 2017; 
Lee et al. 2018; Filieri et al. 2011; Filieri and Tamburrelli 
2013; Filieri et al. 2016; Tallabaci and Souza 2013; Gar-
lan et al. 2004; Zhang et al. 2017). Various techniques have 
been applied to self-adaptive software, for example, machine 
learning (Knauss et al. 2016), model-checking (Lee et al. 
2017; Lee et al. 2018; Lee and Baik 2015; Filieri et al. 2011; 
Filieri and Tamburrelli 2013; Filieri et al. 2016), goal-based 
modelling (Tallabaci and Souza 2013), data mining (Knauss 
et al. 2016), architecture (Garlan et al. 2004) and ontology 
(Seo et al. 2018) based methods. Some studies have applied 
self-adaptive software to IoT with various aspects (Muccini 
et al. 2018; Azimi et al. 2017; Ribeiro et al. 2016; Sylla 
et al. 2017; Henry et al. 2018). In addition, previous studies 
have their own aspects and distinctive characteristics. How-
ever, many self-adaptive software studies have a common 
feature, namely, a loop mechanism (Salehie and Tahvildari 
2009; Tallabaci and Souza 2013; Lee et al. 2017; Lee et al. 
2018; Lee and Baik 2015; Seo et al. 2018; Kim et al. 2017; 
Ouechtati et al. 2018).

To accomplish self-adaption, a loop mechanism was 
proposed (Kephart and Chess 2003; Salehie and Tahvil-
dari 2009) and implemented in several types of autonomic 
computing and self-adaptive software. This loop is called a 
MAPE loop, and consists of four processes: The monitor-
ing process is responsible for collecting data from sensors 

and internal software changes. The detection (analysis) pro-
cess is responsible for analyzing the symptoms related with 
changes to a situation using the monitored data. In addition, 
this process detects when an adaptation is required (i.e., 
when a requirement is violated). The decision (planning) 
process is responsible for decision-making for adaptation. 
Therefore, the decision process generates strategies and 
selects the optimal solution to achieve the best outcome. 
The action (execution) process is responsible for executing 
the optimal solution. A MAPE loop with a shared knowledge 
base is called a MAPE-K loop (Kephart and Chess 2003). A 
MAPE loop and a MAPE-K loop can be applied in IoT with 
various patterns (Muccini et al. 2018). In this study, the con-
cept of self-adaptive software is applied for decision-making 
at runtime, and thus a MAPE-K loop is applied, the details 
of which are described in Sect. 3.1.

2.2 � Game theory and software

Game theory is a mathematical theory that facilitates deci-
sion-making. It has influenced several fields, such as politi-
cal science, biology, economics, and psychology (Nisan 
et al. 2007; Straffin 1993). In addition, game theory can be 
applied in computer science to facilitate decision-making 
in algorithms, artificial intelligence, and networks (Shoham 
2008). Several studies have applied game theory in the soft-
ware field. Bhatia and Sood (2017) applied game theory to 
detect an information overflow with the potential to com-
promise national security. Kumari and Chakravarthy (2016) 
used a cooperative game to achieve data privacy, and called 
their proposed method cooperative privacy (CoP) Azzedin 
and Yahaya (2016) used game theory for free riding in file-
sharing software (i.e., BitTorrent). In addition, game theory 
was applied to the field of networking. Tao et al. (2017) 
proposed a game-theoretic model for a behavior analysis of 
IoT protocols. Kutsuna and Fujita (2011) proposed a conges-
tion control scheme for high-speed networks, and a minor-
ity game was applied to avoid network congestion. Algur 
and Kumar (2013) suggested a game theoretic bandwidth 
allocation algorithm for IEEE 302.16e. Semasinghe et al. 
(2017) suggested a game-theoretic model for wireless IoT 
network resource management. Zheng et al. (2015) proposed 
a graphical game for formulating the problem of energy sav-
ing in a green cellular network environment.

2.3 � Nash equilibrium

In this section, Nash equilibrium applied to the proposed 
method is introduced. Nash equilibrium was introduced by 
John Forbes Nash, Jr., and can provide forecasts when there 
are non-cooperative players in a game (Nash 1950, 1951). 
From this perspective, Nash equilibrium is used to analyze a 
solution among several decision makers (Nisan et al. 2007; 
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Straffin 1993; Shoham 2008). With Nash equilibrium, there 
are players participating in a game who can act indepen-
dently. Such actions are called strategies, and the strategies 
of one player affect those of the other players. When the 
players select a strategy, the payoff is determined based on 
the current set of selected strategies. Each player will choose 
a strategy to achieve an outcome with the highest payoff as 
possible. Base on this principle, Nash equilibrium means 
that players cannot select a better unilateral strategy, because 
any player can receive a better payoff by changing their own 
strategy. In other words, a situation of solidified strategies 
occurs, and thus the players cannot change their own strat-
egy. Nash equilibrium can also be described as follows:

Let (S, f) be a game with n players, where

–	 S = S1 × S2 ×… × Sn is the strategy set of a profile;
–	 Playeri ∈ {1,… , n};
–	 f (x) = {f1(x),… , fn(x)} is the payoff function;
–	 a payoff function is evaluated at x ∈ S;
–	 xi is the strategy profile of player i;
–	 x−i is the strategy profile of the other players;
–	 player i selects strategy xi resulting in strategy profile 

x = (x1 ⋯ xn) , then player i obtains payoff fi(x) ; and
–	 x∗ ∈ S is a Nash equilibrium when ∀i, xi ∈ Si , namely, 

fi(x
∗
i
, x∗

−i
) ≥ fi(xi, x

∗
−i
).

By definition, any player under Nash equilibrium can select 
a better unilateral strategy because all players can receive a 
better payoff by changing their strategy. In other words, the 
set of strategies in Nash equilibrium are the best solutions 
to a game. However, if multiple Nash equilibriums occur, 
an additional rule is needed to select the optimum strategy. 
In this study, the concept of Nash equilibrium is applied 
for decision-making among several requirements of an IoT 
environment. Details regarding the use of Nash equilibrium 
are described in Sect. 3.2.

3 � Nash equilibrium based decision‑making 
method

In this study, a game theoretic decision-making method is 
proposed for IoT, which consists of four processes based 
on a MAPE-loop. In Sect. 3.1, an overview of the proposed 
method is provided. Sect. 3.2 describes the game theoretic 
strategy extraction method using Nash equilibrium, as well 
as the strategy evaluation method. Algorithms for the pro-
posed approach are described in Sect. 3.3.

3.1 � Overview

As previously mentioned, the proposed method uses the 
concept of self-adaptive software, which consists of an 

adaptation processes called a MAPE-K loop (Salehie and 
Tahvildari 2009). The adaptation consists of four processes, 
namely, monitoring, analysis (detection), planning (deci-
sion), and execution (action) with a shared knowledge base. 
An adaptation loop is used in the proposed method, and 
Fig. 1 shows an overview.

As described in Fig. 1, there are interfaces related with 
the classification of devices. In this study, IoT devices 
are classified into only two types: act-devices and sensor-
devices. Although it is possible to classify IoT devices in 
a more detailed manner, only two classifications are used 
herein for clarity and simplicity. Act-devices are used to 
change the environment, and thus should execute a physi-
cal operation. Therefore, act-devices have a physical device 
embedded (e.g., an LED, a fan, or a humidifier). A sensor-
device is used to detect environmental changes, and thus 
should detect physical changes. Therefore, sensor-devices 
have readable devices embedded (e.g., a humidify, tempera-
ture, dust density, or light sensor). In addition, it is assumed 
that both device types can recognize which requirements are 
related with a particular operation. A database containing 
shared knowledge is used. The shared knowledge is a list of 

Fig. 1   Overview of proposed method
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act-devices, and sensor-devices and their requirements. In 
addition, every element on the list contains the relationship 
with other devices and requirements. As shown in Fig. 1 
knowledge is shared in the adaptation loop.

In the adaptation loop, the first process is monitoring. 
The monitoring process is responsible for searching out new 
addable devices and collecting changes to the environment. 
The process searches for new devices, and if there is a device 
with the potentially to be added, the process adds the new 
device to the shared knowledge. After searching for a new 
device, the monitoring process classifies the detected device 
based on the related requirements and the device type. In 
addition, the process collects environmental changes from 
the sensor-devices. The monitored data are transferred to the 
detection process. The detection process detects the satisfac-
tion of the requirements using the monitored data. Results 
that satisfy the requirements are transferred to the decision 
process. The decision process is responsible for extracting 
candidate strategies and selecting an optimal strategy. A 
Nash equilibrium based method makes candidate strategies 
that contain actions of the act-devices to adapt to environ-
mental changes. The candidate strategies are evaluated for 
the selection of an optimal solution. Details on the strategy 
extraction and evaluation methods are described in Sect. 3.2. 
After the evaluation, the optimal strategy is transferred to 
the action process. The action process is responsible for 
executing the optimal strategy. As mentioned previously, a 
strategy contains actions of act-device to adapt to environ-
mental changes for satisfying the requirements. Therefore, 
the action process executes act-devices using the optimal 
solution for adaptation. Subsequently, the monitoring pro-
cess is executed after the action process, and the MAPE-K 
loop is continued.

3.2 � Decision‑making method based on Nash 
equilibrium

This section describes the proposed game theoretic deci-
sion-making and evaluation method. As stated before, a 
requirement can have multiple act-devices; for example, 
if the intensity of the illumination is a requirement, act- 
devices such as windows or lamps may be used. In addi-
tion, an act-device can affect multiple requirements; for 
example, if the windows are act-devices and are opened 
to adjust the light intensity, the intensity of the illumina-
tion may be adjusted, which may also affect the humidity, 
temperature, or other requirements. From a game theoretic 
view, it can be assumed that if certain requirements are 
violated and need to be adapted, this type of situation can 
be considered a game. In addition, the requirements are 
thought of as the players, and the actions of the act-devices 
are the strategies. Therefore, multiple requirements (play-
ers) should effectively operate act-devices (select their 

strategies) to satisfy their objectives. As previously men-
tioned, Nash equilibrium is used to extract candidate strat-
egies, which can be described as follows:

Let a player be a requirement, and let (S, f) be a game 
with n requirements, where

–	 S = S1 × S2 ×⋯ × Sn is the strategy set of profile;
–	 requirement i ∈ {1,… , n};
–	 f (x) = {f1(x),… , fn(x)} is the payoff function;
–	 a payoff function is evaluated at x ∈ S;
–	 xi is an act-device profile of requirement i;
–	 x−i is an act-device profile of the other requirements;
–	 requirement i operates act-device xi resulting in strat-

egy profile x = (x1 ⋯ xn) , and requirement i obtains 
payoff fi(x);

–	 x∗ ∈ S  is  a Nash equil ibr ium for IoT when 
∀i, xi ∈ Si ∶ fi(x

∗
i
, x∗

−i
) ≥ fi(xi, x

∗
−i
);

–	 x∗ can be an operation candidate at runtime; and
–	 a strategy with the highest Nash equilibrium value 

among the requirements is selected and implemented.

Formally, players cannot select an optimal solution when 
they reach the Nash equilibrium because the equilibrium 
allows any players to receive a better payoff by chang-
ing their strategy. Therefore, a Nash equilibrium situation 
denotes a possible operation that satisfies multiple require-
ments, and it may be a candidate solution for adaptation. 
However, if Nash equilibrium is a candidate solution, it is 
necessary to evaluate it to select the most optimal solution.

For a solution evaluation, three conditions are consid-
ered: the number of act-devices, the number of affected 
requirements, and the number of satisfied requirements. 
The details of this are described below.

–	 The number of act-devices (ADs) This is the number of 
act-devices (strategies) required to execute a solution. 
A smaller value is preferable because, if a solution can 
satisfy multiple requirements with a smaller number of 
act-devices as compared to other solutions, it may be 
more efficient.

–	 The number of affected requirement (ARs) This is the 
number of requirements that can be affected by the 
execution of act-devices for a solution. A smaller value 
is preferable because, if the execution of act-devices 
affects a larger number of requirements, a potential 
requirement violation may occur.

–	 The number of satisfied requirement (SRs) This is the 
number of requirements that can be satisfied when exe-
cuting a solution. A larger value is preferable because, 
if a solution satisfies more requirements than other 
solutions, the solution is considered more efficient than 
the other solutions.
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Equation 1 presents the evaluation of solution(ES) using 
AD, AR and SR.

In the equation, there are two terms: requirement related 
terms and act-device related terms. The requirement related 
term is 

(

i.e.,
{

log
(

SR+1

AR+1
+ 1

)})

 and this term denotes the 
contribution of a requirement satisfaction. AR and SR are 
used for this term. As mentioned earlier, a smaller AR and 
larger SR are more efficient, and thus SR is divided by AR. 
A value of 1 is added to the denominator and numerator to 
prevent dividing by zero. For normalization, a logarithmic 
function is assumed, and 1 is added to prevent a negative 
infinity. The second term 

(

i.e.,
{

log
(

1

AD+1
+ 1

)})

 is related 
with the execution of act-devices. As mentioned earlier, a 
smaller value is preferable, and thus a reciprocal number of 
ADs are used. A logarithm function is assumed for normali-
zation, and a value of 1 is added to prevent an infinite 
output.

The coefficients � and � are mediators for adjusting the 
power of the requirement and the act-device terms, and 
the sum of both mediators is 1. The results of the equation 
denote the strategy evaluation of a solution, and a solution 
with the largest number can be an optimal solution.

3.3 � Algorithms for Nash equilibrium based 
decision‑making method

In this section, the algorithms of the proposed approach are 
described. Algorithm 1 shows a strategy extraction using Nash 
equilibrium. Input data are the requirement and act-device 
array, which is an element of shared knowledge, and the output 
data are the optimal strategy for adapting to the environment. 
First, an array is initialized for saving the candidate strategies 
(line 1). The algorithm consists of three loops (lines 2–27, lines 
5–25, and lines 10–23). The first loop repeats for each require-
ment. In the first loop, the requirement variable and strategy 
array list are initialized for saving temporary values (lines 3 and 
4). In addition, the second loop is embedded, and repeats for 
each act-device that is related to a requirement (lines 5–25). In 
the third loop (lines 10–23), there is switch/case statement for 
checking the relationship between a requirement and a strat-
egy with an act-device (lines 12–22). Details of the algorithm 
for checking the relationship are described in Algorithm 2. In 
the switch/case statements, if Nash equilibrium exists among a 
requirement, a strategy, and an act-device, this status is added to 
the temporal strategy array (lines 13–15). As mentioned earlier, 
the Nash equilibrium has the possibility of satisfying multi-
ple requirements; thus, it can indicate a strategy. If there is no 
Nash equilibrium, and there are no conflicting requirements, 

(1)

ES = �

{

log
(

SR + 1

AR + 1
+ 1

)}

+ �

{

log
(

1

AD + 1
+ 1

)}

.

it can also indicate a strategy (lines 16–18) because the cur-
rent state has the possibility of having Nash equilibrium. In 
addition, other cases are deleted from the strategy array (lines 
19–21). In other words, if there is a requirement that is unsatis-
fied by executing an act-device, it may create a conflict among 
the requirements. After the first loop is completed, the most 
optimal strategy is returned (line 28). The optimal solution is 
evaluated based on the strategy score.

Algorithm 1: Strategy extraction algorithm
using Nash equilibrium
Data: Requirement array, act-device array
Result: Adaptive(optimal) strategy

1 candidateStrategyArr = null;
2 while requirementArr.hasNext() do
3 requirement = requirmentArr.now();
4 tempStrategyArr = null;
5 while requirement.actDevice.hasNext() do
6 actDevice = requirement.actDevice.now();
7 if candidateStrategyArr = null then
8 tempStrategyArr.add(requirement,

actDevice);
9 else

10 while candidateStrategyArr.hasNext()
do

11 candiStrategy =
candidateStrategyArr.now();

12 switch relationCheck(requirement,
candiStrategy, actDevice) do

13 case NashEquilibirum do
14 tempStrategy.add(candiStrategy,

requirement, actDevice);
15 end
16 case NotConflict do
17 tempStrategy.add(candiStrategy,

requirement, actDevice);
18 end
19 case Conflict do
20 candidateStrategyArr.now.delete();

21 end
22 end
23 end
24 end
25 end
26 candidateStrategyArr = tempStrategyArr;
27 end
28 return candidtateStrategyArr.getOptimal();

Algorithm 2 is used for extracting the relationship among a 
requirement, strategy, and act-device (line 12 in Algorithm 1). 
In Algorithm 2, the input data are the requirement, strategy, 
and an act-device, and the result is the relationship of the 
input data (i.e., Nash equilibrium, conflict, and no conflict). 
First, an integer value is initialized, and the value saves the 
number of requirements that are affected by the execution 
of the act-device. If the execution of the act-device causes a 
violation of the input requirement, a message-containing con-
flict is returned (line 14). Otherwise, the loop repeats for each 
requirement of the input strategy (lines 3–8). In the loop, if a 
requirement from a strategy is violated through the execution 
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of an act-device, a conflict message is immediately returned 
(lines 4 and 5). This occurs because, if there is an unsatis-
fied requirement, Nash equilibrium cannot occur by defini-
tion. However, if there is a requirement that is affected by the 
execution of an act-device, and the execution may satisfy the 
requirement, the number of affected requirements is increased 
(line 7). The end of the loop occurs when all requirements of 
the strategy are satisfied. After the loop, if the value contain-
ing the number of affected requirements by an act-device is 
greater than 1, it means Nash equilibrium occurs among the 
inputted data. Therefore, Nash equilibrium is returned (lines 
1–10). In addition, if there are no affected requirements from 
the execution of an act-device, it means that the combination 
of inputted data is a candidate for Nash equilibrium. There-
fore, a message containing no conflicts is returned (lines 11 
and 12). The algorithm was implemented and tested using 
Java. Details of the experiment are described in Sect. 4.

Algorithm 2: Relationship extraction algo-
rithm among a requirement, a strategy and an
act-device
Data: A requirement, a strategy and an act-device
Result: Relationship of input data

1 numberOfAffectedReq = 0;
2 if requirement is satisfied with the act-device then
3 while strategy.hasNextRequirement() do
4 if the requirement from strategy is

unsatisfied with the act-device) then
5 return Conflict;
6 else if the requirement from strategy is

satisfied and affected with the act-device
then

7 numberOfAffectedReq++;
8 end
9 if numberOfAffectedReq ≥ 1 then

10 return isNashEquilibrium
11 else
12 return NotConflict;
13 else
14 return Conflict;
15 end

4 � Empirical evaluation

A prototype of the proposed framework was implemented 
using JAVA 1.8 to ensure compatibility with various devices. 
Details of the test devices are described in Table 1. The 

experiment was conducted in various environments with 
different hardware for evaluating the performance. For the 
evaluation, IoT environments were randomly generated with 
different numbers of act-devices and requirements. In the 
test set, a requirement has at least one sensor-device and one 
act-device. In addition, the remaining act-devices are ran-
domly assigned to the requirements, and environment values 
are randomly generated for diverseness. Each experiment is 
iterated 100 times, and the time required for the decision-
making is measured.

The first experiment consisted of ten fixed requirements 
and variable act-devices (i.e., 20–50). Figure 2 shows the 
results; because the proposed method requires more time to 
make an optimal solution, the time increased with a large 
number of act-devices. In addition, if there are a large num-
ber of act-devices, a large number of Nash equilibriums may 
exist. Therefore, it takes more time to extract equilibriums 
with a large number of act-devices. The maximum average 
time of the decision-making was less than 3.5 s for mobile 
devices, but less than 500 ms for a high computing environ-
ment even with 50 act-devices. However, the result shows 
that the decision-making was calculated within a reasonable 
amount of time with high and low computing environments.

Table 1   Details of the hardware 
environments

Hardware CPU clock 
(GHz)

CPU core RAM (GB) OS

Laptop (Intel i5-5200U) 2.7 2 8 Windows 10
Desktop (Intel i5-4670) 3.4 4 16 Windows 10
Server (Intel Xeon E3- 1230L v3) 1.8 4 4 Windows 10
Samsung Galaxy S8 2.31 8 4 Android 8.0.0

Fig. 2   Results of strategy extraction time with increasing act-devices
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The second experiment is similar with the first, but con-
sisted of 40 fixed act-devices and variable requirements 
(i.e., 5–30). As the results in Fig. 3 show, there was a ten-
dency to increase or decrease with an increasing number 
of requirements, the reason for which is the complexity of 
interconnections among the requirements. To extract the 
Nash equilibrium, the possible strategies of a requirement 
is checked against the other requirements, and thus, if an 
interconnection among the requirements is complex, more 
time to extract the equilibriums is required than with a sim-
ple interconnection. Therefore, the results show that the 
decision-making is affected more by the complexity than 
by the number of requirements. However, the second experi-
ment results also show a reasonable amount of time even 
with a complex interconnection of requirements and a low 
computing environment.

The third experiment was conducted using ten require-
ments, and 15 act-devices randomly assigned to two require-
ments. The experiment was iterated 10,000 times using ran-
domly generated situations. The purpose of the experiment 
was to investigate the number of strategies that can satisfy 
the requirements. Figure 4 shows the number of strategies 
extracted in randomly generated situations. In this experi-
ment, there were ten requirements, and thus the number of 
requirements in need of adaptation was distributed from zero 
to ten. It can be seen that the number of strategies increased 
as the number of requirements increased. The extracted strat-
egies were used to satisfy all requirements. It is possible that 
there were no strategies satisfying all requirements. How-
ever, the third experiment shows that the proposed approach 
can extract strategies under dynamic situations.

5 � Conclusion

A game theoretic decision-making method using a MAPE-
K loop was proposed in this study. The method consists of 
four processes: monitoring, action, detection and decision 
processes. The monitoring process collects new devices 
to construct an IoT environment, and reads the sensor-
devices to detect environmental changes. The monitored 
data are transferred to the detection process, which is used 
to detect a requirement violation. The decision process 
receives violations of the requirements and generates a 
candidate strategy using the game-theoretic decision-mak-
ing method. The candidate strategies are evaluated using 
an evaluation method, and the most optimal solution is 
selected for adapting to environmental changes. The last 
process is the action process, which executes the optimal 
solution from the decision process. An empirical evalua-
tion was conducted to evaluate the proposed approach, and 
the results show that the proposed framework can be used 
to extract candidate strategies and the optimal solution 
within a reasonable amount of time. In addition, the results 
show that the proposed method can be applied at runtime.

In the future, The proposed approach will be extended 
for application in physical IoT environments. Especially, 
the proposed approach will be applied in smart home and 
smart greenhouse. A modeling method that automatically 
generates data from a sensor for automation of an IoT sys-
tem will be studied. In addition, a reinforcement learning 
based decision-making method will be conducted.
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