
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing
https://doi.org/10.1007/s12652-019-01367-2

ORIGINAL RESEARCH

A Nash equilibrium based decision‑making method for internet
of things

Euijong Lee1  · Young‑Duk Seo2  · Young‑Gab Kim1 

Received: 27 September 2018 / Accepted: 12 June 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
In recent years, the Internet of Things (IoT) has gained global popularity. IoT can connect several objects and create a dynamic
environment; thus, an IoT system must adapt to environmental changes. To adapt to a dynamic environment, an effective
decision-making method is required for an IoT system. Game theory is a mathematical method for decision-making among
decision makers, and it may be applied to decision-making for an IoT system. In addition, the concept of self-adaptive soft-
ware may be applied to IoT because such software evaluates and changes its behavior to satisfy its intended use, and the IoT
system then makes decisions and adapts to its dynamic environment. In this study, a decision-making method is proposed
along with game theoretic decision-making and self-adaptive loop mechanisms for IoT. The proposed method is based on
MAPE-K loops, which are general processes used in self-adaptive software with shared knowledge. In addition, Nash equi-
librium is applied to extract candidate strategies, which are evaluated for selecting the most optimal solution. The proposed
method was implemented as a prototype, and experiments were conducted to evaluate its runtime performance. The results
show that the proposed method can be applied to an IoT environment at runtime.

Keywords  Self-adaptive software · Game theory · Nash equilibrium · Internet of Things

1  Introduction

In recent years, Internet of Things (IoT) has become increas-
ingly sophisticated and widespread, and it is applied in vari-
ous fields [e.g., smart home (Jo and Yoon 2018; Park et al.
2019), smart city (Jeong and Park 2019; Choi and Ahn
2019), healthcare (Azimi et al. 2017), middleware (Ouech-
tati et al. 2018), and augmented reality (Jo and Kim 2019)].
IoT is a technology that connects objects using a wireless
network. Therefore, IoT can connect several objects together
to create a dynamic environment (Kaur and Kaur 2017;
Rayes and Samer 2017). In addition, an IoT environment is

changed through its surrounding environment. Therefore, an
IoT system must dynamically satisfy its requirements and
adapt to changes in the environment at runtime. Therefore,
an IoT system needs a decision-making method for adapt-
ing to dynamic environmental changes (Balasubramaniam
and Jagannath 2015; Mohammadi et al. 2019). Game theory
is a mathematical theory, and is used for decision-making
between rational decision-makers (Nisan et al. 2007; Straffin
1993). Game theory has influenced various fields, includ-
ing economics, biology, politic science, and psychology. In
addition, it was applied to computer science, artificial intel-
ligence, networking, and decision-making algorithms (Sho-
ham 2008; Algur and Kumar 2013; Kumari and Chakravar-
thy 2016). Therefore, game theory may be applied to
decision-making for IoT. In addition, to adapt to a dynamic
environment, self-adaptive software may be applied to IoT
(Hughes 2018). Self-adaptive software detects environmen-
tal conditions, and changes its behavior or structure if the
software requirements are violated (Salehie and Tahvildari
2009). In this study, we propose a game theoretic decision-
making method using a self-adaptive concept for IoT. The
proposed method consists of a self-adaptive loop and a game
theoretic decision-making method.

 *	 Young‑Gab Kim
	 alwaysgabi@sejong.ac.kr

	 Euijong Lee
	 kongjjagae@sejong.ac.kr

	 Young‑Duk Seo
	 mysid88@sejong.ac.kr

1	 Department of Computer and Information Security, Sejong
University, Seoul, Republic of Korea

2	 Department of Data Science, Sejong University, Seoul,
Republic of Korea

http://orcid.org/0000-0002-7308-7392
http://orcid.org/0000-0001-8542-2058
http://orcid.org/0000-0001-9585-8808
http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-019-01367-2&domain=pdf

	 E. Lee et al.

1 3

The reminder of this paper is organized as follows. Sec-
tion 2 describes related studies, which are self-adaptive
software and game theory. Section 3 introduces the game
theoretic decision-making method for IoT. In Sect. 4, the
empirical experiment is described. Section 5 provides some
concluding remarks regarding this research.

2 � Related work

In this section, self-adaptive software and Nash equilibrium
are introduced. In addition, several studies that applied game
theory to software are described.

2.1 � Self‑adaptive software

Self-adaptive software adapts to its environment by changing
its behavior or structure at runtime (Salehie and Tahvildari
2009). One definition of self-adaptive software was defined
by the Defense Advanced Research Projects Agency (Ladd-
aga and Robertson 2004) as follow:

“Self-adaptive software evaluates its own behavior and
changes behavior when the evaluation indicates that it is not
accomplishing what the software is intended to do, or when
better functionality or performance is possible”.

To achieve self-adaptation, various methods and perspec-
tives have been studied (Knauss et al. 2016; Lee and Baik
2015; Lee et al. 2016; Kim et al. 2017; Lee et al. 2017;
Lee et al. 2018; Filieri et al. 2011; Filieri and Tamburrelli
2013; Filieri et al. 2016; Tallabaci and Souza 2013; Gar-
lan et al. 2004; Zhang et al. 2017). Various techniques have
been applied to self-adaptive software, for example, machine
learning (Knauss et al. 2016), model-checking (Lee et al.
2017; Lee et al. 2018; Lee and Baik 2015; Filieri et al. 2011;
Filieri and Tamburrelli 2013; Filieri et al. 2016), goal-based
modelling (Tallabaci and Souza 2013), data mining (Knauss
et al. 2016), architecture (Garlan et al. 2004) and ontology
(Seo et al. 2018) based methods. Some studies have applied
self-adaptive software to IoT with various aspects (Muccini
et al. 2018; Azimi et al. 2017; Ribeiro et al. 2016; Sylla
et al. 2017; Henry et al. 2018). In addition, previous studies
have their own aspects and distinctive characteristics. How-
ever, many self-adaptive software studies have a common
feature, namely, a loop mechanism (Salehie and Tahvildari
2009; Tallabaci and Souza 2013; Lee et al. 2017; Lee et al.
2018; Lee and Baik 2015; Seo et al. 2018; Kim et al. 2017;
Ouechtati et al. 2018).

To accomplish self-adaption, a loop mechanism was
proposed (Kephart and Chess 2003; Salehie and Tahvil-
dari 2009) and implemented in several types of autonomic
computing and self-adaptive software. This loop is called a
MAPE loop, and consists of four processes: The monitor-
ing process is responsible for collecting data from sensors

and internal software changes. The detection (analysis) pro-
cess is responsible for analyzing the symptoms related with
changes to a situation using the monitored data. In addition,
this process detects when an adaptation is required (i.e.,
when a requirement is violated). The decision (planning)
process is responsible for decision-making for adaptation.
Therefore, the decision process generates strategies and
selects the optimal solution to achieve the best outcome.
The action (execution) process is responsible for executing
the optimal solution. A MAPE loop with a shared knowledge
base is called a MAPE-K loop (Kephart and Chess 2003). A
MAPE loop and a MAPE-K loop can be applied in IoT with
various patterns (Muccini et al. 2018). In this study, the con-
cept of self-adaptive software is applied for decision-making
at runtime, and thus a MAPE-K loop is applied, the details
of which are described in Sect. 3.1.

2.2 � Game theory and software

Game theory is a mathematical theory that facilitates deci-
sion-making. It has influenced several fields, such as politi-
cal science, biology, economics, and psychology (Nisan
et al. 2007; Straffin 1993). In addition, game theory can be
applied in computer science to facilitate decision-making
in algorithms, artificial intelligence, and networks (Shoham
2008). Several studies have applied game theory in the soft-
ware field. Bhatia and Sood (2017) applied game theory to
detect an information overflow with the potential to com-
promise national security. Kumari and Chakravarthy (2016)
used a cooperative game to achieve data privacy, and called
their proposed method cooperative privacy (CoP) Azzedin
and Yahaya (2016) used game theory for free riding in file-
sharing software (i.e., BitTorrent). In addition, game theory
was applied to the field of networking. Tao et al. (2017)
proposed a game-theoretic model for a behavior analysis of
IoT protocols. Kutsuna and Fujita (2011) proposed a conges-
tion control scheme for high-speed networks, and a minor-
ity game was applied to avoid network congestion. Algur
and Kumar (2013) suggested a game theoretic bandwidth
allocation algorithm for IEEE 302.16e. Semasinghe et al.
(2017) suggested a game-theoretic model for wireless IoT
network resource management. Zheng et al. (2015) proposed
a graphical game for formulating the problem of energy sav-
ing in a green cellular network environment.

2.3 � Nash equilibrium

In this section, Nash equilibrium applied to the proposed
method is introduced. Nash equilibrium was introduced by
John Forbes Nash, Jr., and can provide forecasts when there
are non-cooperative players in a game (Nash 1950, 1951).
From this perspective, Nash equilibrium is used to analyze a
solution among several decision makers (Nisan et al. 2007;

A Nash equilibrium based decision‑making method for internet of things﻿	

1 3

Straffin 1993; Shoham 2008). With Nash equilibrium, there
are players participating in a game who can act indepen-
dently. Such actions are called strategies, and the strategies
of one player affect those of the other players. When the
players select a strategy, the payoff is determined based on
the current set of selected strategies. Each player will choose
a strategy to achieve an outcome with the highest payoff as
possible. Base on this principle, Nash equilibrium means
that players cannot select a better unilateral strategy, because
any player can receive a better payoff by changing their own
strategy. In other words, a situation of solidified strategies
occurs, and thus the players cannot change their own strat-
egy. Nash equilibrium can also be described as follows:

Let (S, f) be a game with n players, where

–	 S = S1 × S2 ×… × Sn is the strategy set of a profile;
–	 Playeri ∈ {1,… , n};
–	 f (x) = {f1(x),… , fn(x)} is the payoff function;
–	 a payoff function is evaluated at x ∈ S;
–	 xi is the strategy profile of player i;
–	 x−i is the strategy profile of the other players;
–	 player i selects strategy xi resulting in strategy profile

x = (x1 ⋯ xn) , then player i obtains payoff fi(x) ; and
–	 x∗ ∈ S is a Nash equilibrium when ∀i, xi ∈ Si , namely,

fi(x
∗
i
, x∗

−i
) ≥ fi(xi, x

∗
−i
).

By definition, any player under Nash equilibrium can select
a better unilateral strategy because all players can receive a
better payoff by changing their strategy. In other words, the
set of strategies in Nash equilibrium are the best solutions
to a game. However, if multiple Nash equilibriums occur,
an additional rule is needed to select the optimum strategy.
In this study, the concept of Nash equilibrium is applied
for decision-making among several requirements of an IoT
environment. Details regarding the use of Nash equilibrium
are described in Sect. 3.2.

3 � Nash equilibrium based decision‑making
method

In this study, a game theoretic decision-making method is
proposed for IoT, which consists of four processes based
on a MAPE-loop. In Sect. 3.1, an overview of the proposed
method is provided. Sect. 3.2 describes the game theoretic
strategy extraction method using Nash equilibrium, as well
as the strategy evaluation method. Algorithms for the pro-
posed approach are described in Sect. 3.3.

3.1 � Overview

As previously mentioned, the proposed method uses the
concept of self-adaptive software, which consists of an

adaptation processes called a MAPE-K loop (Salehie and
Tahvildari 2009). The adaptation consists of four processes,
namely, monitoring, analysis (detection), planning (deci-
sion), and execution (action) with a shared knowledge base.
An adaptation loop is used in the proposed method, and
Fig. 1 shows an overview.

As described in Fig. 1, there are interfaces related with
the classification of devices. In this study, IoT devices
are classified into only two types: act-devices and sensor-
devices. Although it is possible to classify IoT devices in
a more detailed manner, only two classifications are used
herein for clarity and simplicity. Act-devices are used to
change the environment, and thus should execute a physi-
cal operation. Therefore, act-devices have a physical device
embedded (e.g., an LED, a fan, or a humidifier). A sensor-
device is used to detect environmental changes, and thus
should detect physical changes. Therefore, sensor-devices
have readable devices embedded (e.g., a humidify, tempera-
ture, dust density, or light sensor). In addition, it is assumed
that both device types can recognize which requirements are
related with a particular operation. A database containing
shared knowledge is used. The shared knowledge is a list of

Fig. 1   Overview of proposed method

	 E. Lee et al.

1 3

act-devices, and sensor-devices and their requirements. In
addition, every element on the list contains the relationship
with other devices and requirements. As shown in Fig. 1
knowledge is shared in the adaptation loop.

In the adaptation loop, the first process is monitoring.
The monitoring process is responsible for searching out new
addable devices and collecting changes to the environment.
The process searches for new devices, and if there is a device
with the potentially to be added, the process adds the new
device to the shared knowledge. After searching for a new
device, the monitoring process classifies the detected device
based on the related requirements and the device type. In
addition, the process collects environmental changes from
the sensor-devices. The monitored data are transferred to the
detection process. The detection process detects the satisfac-
tion of the requirements using the monitored data. Results
that satisfy the requirements are transferred to the decision
process. The decision process is responsible for extracting
candidate strategies and selecting an optimal strategy. A
Nash equilibrium based method makes candidate strategies
that contain actions of the act-devices to adapt to environ-
mental changes. The candidate strategies are evaluated for
the selection of an optimal solution. Details on the strategy
extraction and evaluation methods are described in Sect. 3.2.
After the evaluation, the optimal strategy is transferred to
the action process. The action process is responsible for
executing the optimal strategy. As mentioned previously, a
strategy contains actions of act-device to adapt to environ-
mental changes for satisfying the requirements. Therefore,
the action process executes act-devices using the optimal
solution for adaptation. Subsequently, the monitoring pro-
cess is executed after the action process, and the MAPE-K
loop is continued.

3.2 � Decision‑making method based on Nash
equilibrium

This section describes the proposed game theoretic deci-
sion-making and evaluation method. As stated before, a
requirement can have multiple act-devices; for example,
if the intensity of the illumination is a requirement, act-
devices such as windows or lamps may be used. In addi-
tion, an act-device can affect multiple requirements; for
example, if the windows are act-devices and are opened
to adjust the light intensity, the intensity of the illumina-
tion may be adjusted, which may also affect the humidity,
temperature, or other requirements. From a game theoretic
view, it can be assumed that if certain requirements are
violated and need to be adapted, this type of situation can
be considered a game. In addition, the requirements are
thought of as the players, and the actions of the act-devices
are the strategies. Therefore, multiple requirements (play-
ers) should effectively operate act-devices (select their

strategies) to satisfy their objectives. As previously men-
tioned, Nash equilibrium is used to extract candidate strat-
egies, which can be described as follows:

Let a player be a requirement, and let (S, f) be a game
with n requirements, where

–	 S = S1 × S2 ×⋯ × Sn is the strategy set of profile;
–	 requirement i ∈ {1,… , n};
–	 f (x) = {f1(x),… , fn(x)} is the payoff function;
–	 a payoff function is evaluated at x ∈ S;
–	 xi is an act-device profile of requirement i;
–	 x−i is an act-device profile of the other requirements;
–	 requirement i operates act-device xi resulting in strat-

egy profile x = (x1 ⋯ xn) , and requirement i obtains
payoff fi(x);

–	 x∗ ∈ S is a Nash equil ibr ium for IoT when
∀i, xi ∈ Si ∶ fi(x

∗
i
, x∗

−i
) ≥ fi(xi, x

∗
−i
);

–	 x∗ can be an operation candidate at runtime; and
–	 a strategy with the highest Nash equilibrium value

among the requirements is selected and implemented.

Formally, players cannot select an optimal solution when
they reach the Nash equilibrium because the equilibrium
allows any players to receive a better payoff by chang-
ing their strategy. Therefore, a Nash equilibrium situation
denotes a possible operation that satisfies multiple require-
ments, and it may be a candidate solution for adaptation.
However, if Nash equilibrium is a candidate solution, it is
necessary to evaluate it to select the most optimal solution.

For a solution evaluation, three conditions are consid-
ered: the number of act-devices, the number of affected
requirements, and the number of satisfied requirements.
The details of this are described below.

–	 The number of act-devices (ADs) This is the number of
act-devices (strategies) required to execute a solution.
A smaller value is preferable because, if a solution can
satisfy multiple requirements with a smaller number of
act-devices as compared to other solutions, it may be
more efficient.

–	 The number of affected requirement (ARs) This is the
number of requirements that can be affected by the
execution of act-devices for a solution. A smaller value
is preferable because, if the execution of act-devices
affects a larger number of requirements, a potential
requirement violation may occur.

–	 The number of satisfied requirement (SRs) This is the
number of requirements that can be satisfied when exe-
cuting a solution. A larger value is preferable because,
if a solution satisfies more requirements than other
solutions, the solution is considered more efficient than
the other solutions.

A Nash equilibrium based decision‑making method for internet of things﻿	

1 3

Equation 1 presents the evaluation of solution(ES) using
AD, AR and SR.

In the equation, there are two terms: requirement related
terms and act-device related terms. The requirement related
term is

(

i.e.,
{

log
(

SR+1

AR+1
+ 1

)})

 and this term denotes the
contribution of a requirement satisfaction. AR and SR are
used for this term. As mentioned earlier, a smaller AR and
larger SR are more efficient, and thus SR is divided by AR.
A value of 1 is added to the denominator and numerator to
prevent dividing by zero. For normalization, a logarithmic
function is assumed, and 1 is added to prevent a negative
infinity. The second term

(

i.e.,
{

log
(

1

AD+1
+ 1

)})

 is related
with the execution of act-devices. As mentioned earlier, a
smaller value is preferable, and thus a reciprocal number of
ADs are used. A logarithm function is assumed for normali-
zation, and a value of 1 is added to prevent an infinite
output.

The coefficients � and � are mediators for adjusting the
power of the requirement and the act-device terms, and
the sum of both mediators is 1. The results of the equation
denote the strategy evaluation of a solution, and a solution
with the largest number can be an optimal solution.

3.3 � Algorithms for Nash equilibrium based
decision‑making method

In this section, the algorithms of the proposed approach are
described. Algorithm 1 shows a strategy extraction using Nash
equilibrium. Input data are the requirement and act-device
array, which is an element of shared knowledge, and the output
data are the optimal strategy for adapting to the environment.
First, an array is initialized for saving the candidate strategies
(line 1). The algorithm consists of three loops (lines 2–27, lines
5–25, and lines 10–23). The first loop repeats for each require-
ment. In the first loop, the requirement variable and strategy
array list are initialized for saving temporary values (lines 3 and
4). In addition, the second loop is embedded, and repeats for
each act-device that is related to a requirement (lines 5–25). In
the third loop (lines 10–23), there is switch/case statement for
checking the relationship between a requirement and a strat-
egy with an act-device (lines 12–22). Details of the algorithm
for checking the relationship are described in Algorithm 2. In
the switch/case statements, if Nash equilibrium exists among a
requirement, a strategy, and an act-device, this status is added to
the temporal strategy array (lines 13–15). As mentioned earlier,
the Nash equilibrium has the possibility of satisfying multi-
ple requirements; thus, it can indicate a strategy. If there is no
Nash equilibrium, and there are no conflicting requirements,

(1)

ES = �

{

log
(

SR + 1

AR + 1
+ 1

)}

+ �

{

log
(

1

AD + 1
+ 1

)}

.

it can also indicate a strategy (lines 16–18) because the cur-
rent state has the possibility of having Nash equilibrium. In
addition, other cases are deleted from the strategy array (lines
19–21). In other words, if there is a requirement that is unsatis-
fied by executing an act-device, it may create a conflict among
the requirements. After the first loop is completed, the most
optimal strategy is returned (line 28). The optimal solution is
evaluated based on the strategy score.

Algorithm 1: Strategy extraction algorithm
using Nash equilibrium
Data: Requirement array, act-device array
Result: Adaptive(optimal) strategy

1 candidateStrategyArr = null;
2 while requirementArr.hasNext() do
3 requirement = requirmentArr.now();
4 tempStrategyArr = null;
5 while requirement.actDevice.hasNext() do
6 actDevice = requirement.actDevice.now();
7 if candidateStrategyArr = null then
8 tempStrategyArr.add(requirement,

actDevice);
9 else

10 while candidateStrategyArr.hasNext()
do

11 candiStrategy =
candidateStrategyArr.now();

12 switch relationCheck(requirement,
candiStrategy, actDevice) do

13 case NashEquilibirum do
14 tempStrategy.add(candiStrategy,

requirement, actDevice);
15 end
16 case NotConflict do
17 tempStrategy.add(candiStrategy,

requirement, actDevice);
18 end
19 case Conflict do
20 candidateStrategyArr.now.delete();

21 end
22 end
23 end
24 end
25 end
26 candidateStrategyArr = tempStrategyArr;
27 end
28 return candidtateStrategyArr.getOptimal();

Algorithm 2 is used for extracting the relationship among a
requirement, strategy, and act-device (line 12 in Algorithm 1).
In Algorithm 2, the input data are the requirement, strategy,
and an act-device, and the result is the relationship of the
input data (i.e., Nash equilibrium, conflict, and no conflict).
First, an integer value is initialized, and the value saves the
number of requirements that are affected by the execution
of the act-device. If the execution of the act-device causes a
violation of the input requirement, a message-containing con-
flict is returned (line 14). Otherwise, the loop repeats for each
requirement of the input strategy (lines 3–8). In the loop, if a
requirement from a strategy is violated through the execution

	 E. Lee et al.

1 3

of an act-device, a conflict message is immediately returned
(lines 4 and 5). This occurs because, if there is an unsatis-
fied requirement, Nash equilibrium cannot occur by defini-
tion. However, if there is a requirement that is affected by the
execution of an act-device, and the execution may satisfy the
requirement, the number of affected requirements is increased
(line 7). The end of the loop occurs when all requirements of
the strategy are satisfied. After the loop, if the value contain-
ing the number of affected requirements by an act-device is
greater than 1, it means Nash equilibrium occurs among the
inputted data. Therefore, Nash equilibrium is returned (lines
1–10). In addition, if there are no affected requirements from
the execution of an act-device, it means that the combination
of inputted data is a candidate for Nash equilibrium. There-
fore, a message containing no conflicts is returned (lines 11
and 12). The algorithm was implemented and tested using
Java. Details of the experiment are described in Sect. 4.

Algorithm 2: Relationship extraction algo-
rithm among a requirement, a strategy and an
act-device
Data: A requirement, a strategy and an act-device
Result: Relationship of input data

1 numberOfAffectedReq = 0;
2 if requirement is satisfied with the act-device then
3 while strategy.hasNextRequirement() do
4 if the requirement from strategy is

unsatisfied with the act-device) then
5 return Conflict;
6 else if the requirement from strategy is

satisfied and affected with the act-device
then

7 numberOfAffectedReq++;
8 end
9 if numberOfAffectedReq ≥ 1 then

10 return isNashEquilibrium
11 else
12 return NotConflict;
13 else
14 return Conflict;
15 end

4 � Empirical evaluation

A prototype of the proposed framework was implemented
using JAVA 1.8 to ensure compatibility with various devices.
Details of the test devices are described in Table 1. The

experiment was conducted in various environments with
different hardware for evaluating the performance. For the
evaluation, IoT environments were randomly generated with
different numbers of act-devices and requirements. In the
test set, a requirement has at least one sensor-device and one
act-device. In addition, the remaining act-devices are ran-
domly assigned to the requirements, and environment values
are randomly generated for diverseness. Each experiment is
iterated 100 times, and the time required for the decision-
making is measured.

The first experiment consisted of ten fixed requirements
and variable act-devices (i.e., 20–50). Figure 2 shows the
results; because the proposed method requires more time to
make an optimal solution, the time increased with a large
number of act-devices. In addition, if there are a large num-
ber of act-devices, a large number of Nash equilibriums may
exist. Therefore, it takes more time to extract equilibriums
with a large number of act-devices. The maximum average
time of the decision-making was less than 3.5 s for mobile
devices, but less than 500 ms for a high computing environ-
ment even with 50 act-devices. However, the result shows
that the decision-making was calculated within a reasonable
amount of time with high and low computing environments.

Table 1   Details of the hardware
environments

Hardware CPU clock
(GHz)

CPU core RAM (GB) OS

Laptop (Intel i5-5200U) 2.7 2 8 Windows 10
Desktop (Intel i5-4670) 3.4 4 16 Windows 10
Server (Intel Xeon E3- 1230L v3) 1.8 4 4 Windows 10
Samsung Galaxy S8 2.31 8 4 Android 8.0.0

Fig. 2   Results of strategy extraction time with increasing act-devices

A Nash equilibrium based decision‑making method for internet of things﻿	

1 3

The second experiment is similar with the first, but con-
sisted of 40 fixed act-devices and variable requirements
(i.e., 5–30). As the results in Fig. 3 show, there was a ten-
dency to increase or decrease with an increasing number
of requirements, the reason for which is the complexity of
interconnections among the requirements. To extract the
Nash equilibrium, the possible strategies of a requirement
is checked against the other requirements, and thus, if an
interconnection among the requirements is complex, more
time to extract the equilibriums is required than with a sim-
ple interconnection. Therefore, the results show that the
decision-making is affected more by the complexity than
by the number of requirements. However, the second experi-
ment results also show a reasonable amount of time even
with a complex interconnection of requirements and a low
computing environment.

The third experiment was conducted using ten require-
ments, and 15 act-devices randomly assigned to two require-
ments. The experiment was iterated 10,000 times using ran-
domly generated situations. The purpose of the experiment
was to investigate the number of strategies that can satisfy
the requirements. Figure 4 shows the number of strategies
extracted in randomly generated situations. In this experi-
ment, there were ten requirements, and thus the number of
requirements in need of adaptation was distributed from zero
to ten. It can be seen that the number of strategies increased
as the number of requirements increased. The extracted strat-
egies were used to satisfy all requirements. It is possible that
there were no strategies satisfying all requirements. How-
ever, the third experiment shows that the proposed approach
can extract strategies under dynamic situations.

5 � Conclusion

A game theoretic decision-making method using a MAPE-
K loop was proposed in this study. The method consists of
four processes: monitoring, action, detection and decision
processes. The monitoring process collects new devices
to construct an IoT environment, and reads the sensor-
devices to detect environmental changes. The monitored
data are transferred to the detection process, which is used
to detect a requirement violation. The decision process
receives violations of the requirements and generates a
candidate strategy using the game-theoretic decision-mak-
ing method. The candidate strategies are evaluated using
an evaluation method, and the most optimal solution is
selected for adapting to environmental changes. The last
process is the action process, which executes the optimal
solution from the decision process. An empirical evalua-
tion was conducted to evaluate the proposed approach, and
the results show that the proposed framework can be used
to extract candidate strategies and the optimal solution
within a reasonable amount of time. In addition, the results
show that the proposed method can be applied at runtime.

In the future, The proposed approach will be extended
for application in physical IoT environments. Especially,
the proposed approach will be applied in smart home and
smart greenhouse. A modeling method that automatically
generates data from a sensor for automation of an IoT sys-
tem will be studied. In addition, a reinforcement learning
based decision-making method will be conducted.

Acknowledgements  This work was supported by Institute for Informa-
tion & Communications Technology Promotion (IITP) grant funded
by the Korea government (MSIP) (No. 2016-0-00498, User behavior
pattern analysis based authentication and anomaly detection within the
system using deep learning techniques)

Fig. 3   Results of strategy extraction time with increasing require-
ments

Fig. 4   Results of strategy extraction

	 E. Lee et al.

1 3

References

Algur SP, Kumar NP (2013) Novel user centric, game theory based
bandwidth allocation mechanism in wimax. Hum Centric
Compu Inf Sci 3(1):20

Azimi I, Anzanpour A, Rahmani AM, Pahikkala T, Levorato M,
Liljeberg P, Dutt N (2017) Hich: Hierarchical fog-assisted com-
puting architecture for healthcare iot. ACM Trans Embedded
Comput Syst (TECS) 16(5s):174

Azzedin F, Yahaya M (2016) Modeling bittorrent choking algorithm
using game theory. Future Gener Comput Syst 55:255–265

Balasubramaniam S, Jagannath R (2015) A service oriented IOT
using cluster controlled decision making. In: Advance Com-
puting Conference (IACC), 2015 IEEE International, IEEE, pp
558–563

Bhatia M, Sood SK (2017) Game theoretic decision making in iot-
assisted activity monitoring of defence personnel. Multimedia
Tools Appl 76(21):21911–21935

Choi J, Ahn S (2019) Scalable service placement in the fog computing
environment for the iot-based smart city. J Inf Process Syst 15:2

Filieri A, Tamburrelli G (2013) Probabilistic verification at runtime
for self-adaptive systems. In: Assurances for Self-Adaptive Sys-
tems, Springer, pp 30–59

Filieri A, Ghezzi C, Tamburrelli G (2011) Run-time efficient proba-
bilistic model checking. In: Proceedings of the 33rd interna-
tional conference on software engineering, ACM, pp 341–350

Filieri A, Tamburrelli G, Ghezzi C (2016) Supporting self-adaptation
via quantitative verification and sensitivity analysis at run time.
IEEE Trans Softw Eng 1:75–99

Garlan D, Cheng SW, Huang AC, Schmerl B, Steenkiste P (2004)
Rainbow: Architecture-based self-adaptation with reusable
infrastructure. Computer 37(10):46–54

Henry J, Tang S, Hanneghan M, Carter C (2018) A framework for
the integration of serious games and the internet of things (iot).
In: 2018 IEEE 6th international conference on serious games
and applications for health (SeGAH), IEEE, pp 1–8

Hughes D (2018) Self adaptive software systems are essential for the
internet of things. In: 2018 IEEE/ACM 13th International sym-
posium on software engineering for adaptive and self-managing
systems (SEAMS), pp 21–21

Jeong YS, Park JH (2019) Iot and smart city technology: challenges,
opportunities, and solutions. J Inf Process Syst 15:2

Jo D, Kim GJ (2019) IOT+ AR: pervasive and augmented environ-
ments for ”digi-log” shopping experience. Hum Centric Comput
Inf Sci 9(1):1

Jo H, Yoon YI (2018) Intelligent smart home energy efficiency model
using artificial tensorflow engine. Hum Centric Comput Inf Sci
8(1):9

Kaur J, Kaur K (2017) A fuzzy approach for an iot-based automated
employee performance appraisal. Comput Mater Continua
53(1):23–36

Kephart JO, Chess DM (2003) The vision of autonomic computing.
Computer 1:41–50

Kim H, Lee E, Baik DK (2017) Self-adaptive software simulation: a
lighting control system for multiple devices. In: Asian Simula-
tion Conference, Springer, pp 380–391

Knauss A, Damian D, Franch X, Rook A, Müller HA, Thomo A
(2016) Acon: A learning-based approach to deal with uncer-
tainty in contextual requirements at runtime. Inf Softw Technol
70:85–99

Kumari V, Chakravarthy S (2016) Cooperative privacy game: a novel
strategy for preserving privacy in data publishing. Hum Centric
Comput Inf Sci 6(1):12

Kutsuna H, Fujita S (2011) A fair and efficient congestion avoid-
ance scheme based on the minority game. J Inf Process Syst
7(3):531–542

Laddaga R, Robertson P (2004) Self adaptive software: A position
paper. In: SELF-STAR: International Workshop on Self-* Prop-
erties in Complex Information Systems, Citeseer, vol 31, p 19

Lee E, Baik DK (2015) A verification technique for self-adaptive soft-
ware by using model-checking. In: Proceedings on the Interna-
tional Conference on Artificial Intelligence (ICAI), The Steering
Committee of The World Congress in Computer Science, Com-
puter Engineering and Applied Computing (WorldComp), p 395

Lee E, Kim YG, Seo YD, Seol K, Baik DK (2017) Runtime verification
method for self-adaptive software using reachability of transition
system model. In: Proceedings of the symposium on applied com-
puting, ACM, pp 65–68

Lee E, Kim YG, Seo YD, Seol K, Baik DK (2018) Ringa: design and
verification of finite state machine for self-adaptive software at
runtime. Inf Softw Technol 93:200–222

Lee J, Lee E, Baik DK (2016) Simulation and performance evalua-
tion of the self-adaptive light control system. J Korea Soc Simul
25(2):63–74

Mohammadi V, Rahmani AM, Darwesh AM, Sahafi A (2019) Trust-
based recommendation systems in internet of things: a systematic
literature review. Hum Centric Comput Inf Sci 9(1):21. https​://doi.
org/10.1186/s1367​3-019-0183-8

Muccini H, Spalazzese R, Moghaddam MT, Sharaf M (2018) Self-
adaptive iot architectures: an emergency handling case study. In:
Proceedings of the 12th European conference on software archi-
tecture: companion proceedings, ACM, p 19

Nash J (1951) Non-cooperative games. Ann Math 1951:286–295
Nash JF et al (1950) Equilibrium points in n-person games. Proc Natl

Acad Sci 36(1):48–49
Nisan N, Roughgarden T, Tardos E, Vazirani VV (2007) Algorithmic

game theory, vol 1. Cambridge University Press, Cambridge
Ouechtati H, Azzouna NB, Said LB (2018) Towards a self-adaptive

access control middleware for the internet of things. In: 2018
international conference on information networking (ICOIN),
IEEE, pp 545–550

Park DM, Kim SK, Seo YS (2019) S-mote: smart home framework
for common household appliances in IOT network. J Inf Process
Syst 15:2

Rayes A, Samer S (2017) Internet of things–from hype to reality. The
road to Digitization River Publisher Series in Communications,
Denmark, p 49

Ribeiro AdRL, de Almeida FM, Moreno ED, Montesco CA (2016) A
management architectural pattern for adaptation system in internet
of things. In: 2016 international wireless communications and
mobile computing conference (IWCMC), IEEE, pp 576–581

Salehie M, Tahvildari L (2009) Self-adaptive software: landscape
and research challenges. ACM Trans auton Adapt Syst (TAAS)
4(2):14

Semasinghe P, Maghsudi S, Hossain E (2017) Game theoretic mecha-
nisms for resource management in massive wireless iot systems.
IEEE Commun Mag 55(2):121–127

Seo YD, Kim YG, Lee E, Seol KS, Baik DK (2018) Design of a smart
greenhouse system based on mape-k and iso/iec-11179. In: Con-
sumer Electronics (ICCE), 2018 IEEE International Conference
on, IEEE, pp 1–2

Shoham Y (2008) Computer science and game theory. Commun ACM
51(8):74–79

Straffin PD (1993) Game theory and strategy, vol 36. MAA
Sylla AN, Louvel M, Rutten E, Delaval G (2017) Design framework

for reliable multiple autonomic loops in smart environments. In:
2017 international conference on cloud and autonomic computing
(ICCAC), IEEE, pp 131–142

https://doi.org/10.1186/s13673-019-0183-8
https://doi.org/10.1186/s13673-019-0183-8

A Nash equilibrium based decision‑making method for internet of things﻿	

1 3

Tallabaci G, Souza VES (2013) Engineering adaptation with zanshin:
an experience report. In: Proceedings of the 8th international sym-
posium on software engineering for adaptive and self-managing
systems, IEEE Press, pp 93–102

Tao X, Li G, Sun D, Cai H (2017) A game-theoretic model and analysis
of data exchange protocols for internet of things in clouds. Future
Gener Comput Syst 76:582–589

Zhang W, Zhou R, Zou Y (2017) Self-adaptive and bidirectional
dynamic subset selection algorithm for digital image correlation.
J Inf Process Syst 13(2):305–320

Zheng J, Cai Y, Chen X, Li R, Zhang H (2015) Optimal base station
sleeping in green cellular networks: a distributed cooperative
framework based on game theory. IEEE Trans Wirel Commun
14(8):4391–4406

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	A Nash equilibrium based decision-making method for internet of things
	Abstract
	1 Introduction
	2 Related work
	2.1 Self-adaptive software
	2.2 Game theory and software
	2.3 Nash equilibrium

	3 Nash equilibrium based decision-making method
	3.1 Overview
	3.2 Decision-making method based on Nash equilibrium
	3.3 Algorithms for Nash equilibrium based decision-making method

	4 Empirical evaluation
	5 Conclusion
	Acknowledgements
	References

